KM CNC Machine Service
Published

Throwback Thursday: Rough Milling Applications: Technology and Tips

When it comes to productivity gains in rough milling applications, this article examines how cutting tool technologies and strategies can play a major role and how to measure and choose the right process and solution.

Share

Part geometry, machine tool, programming and cutting tool are the major variables that each moldmaker deals with daily and which play a factor in the approach that each company takes when processing a mold. Regarding cutting tools for roughing, the approach and tool you choose may be unique for each job. Check out these rough milling application tips shared bby Iscar in this 2008 article:

Plunge Milling. Plunge milling has been around for a long time and can be the most consistent form of high metal removal, especially on older machines incapable of operating at high feedrates. This consistency is a result of efficient toolpaths, as there is little wasted tool motion when compared to more common methods of machining when part geometry forces the cutter into many directional changes (e.g., Z level).

Center cutting plungers exist, but the most recent advancements come in the form of side plungers. Programming solutions to support plunge milling is an area of recent improvements for many CAD/CAM companies, and good solutions exist for plunge milling of 3-D geometries, as well as 2-D.

On the product side, advanced pressing technologies have allowed the creation of inserts with more positive geometry, which reduces cutting and bending forces and allows plunging to be performed (for the most part) without the need for angular retracts. This saves time and intensive programming, allowing operators to use canned drilling cycles for plunging. Tangential designs provide increased strength with an insert having four edges for enhanced cost benefit.

Shred Milling. Anti-vibration milling cutters are a solution provider when vibrations and unfavorable conditions are encountered (long reach, unstable fixture, chip removal issues, machine power limitations). This technology is also nothing new, but it is an area that has been improved upon with positioning accuracy of the insert (to avoid feed overload from one tooth to the next) and a variety of insert (pressed and ground) geometries enabling the user to customize the tool to the application/material at hand. Usually, when faced with poor cutting conditions, the parameters are reduced to enable the completion of the part.

Other costly solutions include purchasing vibration dampening toolholders and coarse pitch cutters. With anti-vibration milling cutters, the wave design of the cutting edge creates small serrated chips, which are lighter and easier to evacuate from the cutting zone. The design also reduces cutting forces and breaks up harmonics (vibrations) that are common, especially in long reach applications.

High-Feed Milling. High-feed milling is the most universal approach to increased metal removal rates in roughing. High-feed type cutters have also been around now for quite some time, although many companies still have not experimented with the approach. For moldmaking, the high-feed approach in 3-D applications works very well because the small depth-of-cut characteristics leave small scallop heights (leftover material) for subsequent operations while maintaining a very high metal removal rate.

There has been a huge demand for cutting tools with high-feed geometry and this has led to the development of a wide range of tools, from solid carbide tools in smaller diameters (1/8" to 5/16") to the indexable tools ranging from 5/16" all the way up to 6” in diameter. This is also an area where advancements in pressing technology has enabled the creation of double-sided inserts that reduce cutting forces, while offering twice the number of cutting edges for enhanced cost savings (six edges per insert).

Read full article here.

MMT Today enews
Bonal Meta-Lax Stress Relief Solution
Date Code Inserts
Progressive Components
North America’s Premier Molding and Moldmaking Event
Data Flute
MoldMaking Technology Magazine
KM CNC Machine Service

Related Content

Analysis

How to Manage Wall Thickness Changes in Your Mold Design

To ensure even filling and cooling, consider wall section transitions, corners and fillets, ribs and bosses, lip and rim designs and CAE flow simulation software.

Read More
Analysis

How to Harness 3D Scanning for Mold Tool Repairs

3D scanning supports the repair of molds with no history, drawings or design files.

Read More

What is Scientific Maintenance? Part 2

Part two of this three-part series explains specific data that toolrooms must collect, analyze and use to truly advance to a scientific maintenance culture where you can measure real data and drive decisions.

Read More

How to Analyze and Optimize Cutting Conditions to Reduce Cycle Time

Plastic injection mold design and manufacturing company puts NC program optimization software module to the test. The results were surprising.

Read More

Read Next

3D Printing

Are You a Moldmaker Considering 3D Printing? Consider the 3D Printing Workshop at NPE2024

Presentations will cover 3D printing for mold tooling, material innovation, product development, bridge production and full-scale, high-volume additive manufacturing. 

Read More
Education

How to Use Continuing Education to Remain Competitive in Moldmaking

Continued training helps moldmakers make tooling decisions and properly use the latest cutting tool to efficiently machine high-quality molds.

Read More
KM CNC Machine Service