More from K 2019
K 2019 show organizers share insight on automation trends in plastics, which will be evident on the show floor October 16-23 in Germany.
I’ll be headed out to K 2019 next month with MMT’s publisher Ryan Delahanty as well as several colleagues from sister publication Plastics Technology. We’ll all be there to report back to our readers the technology and industry trends that will be showcased at this international plastics event from October 16-23 in Dusseldorf, Germany. Here is a report from the event organizers on automation in plastics:
Enhancing Automation
The PLASTICS Association’s “2018 Size and Impact Report,” notes that the U.S. plastics industry is essentially at full employment. Anecdotal information from molders, extruders and other fabricators reveals that most are having a difficult time finding qualified workers. This situation is spurring efforts by product makers, compounders and others to further automate operations.
Many such initiatives are based on Industry 4.0 (I4) automation principles. I4 received a major boost from the German government in the past decade as a way of promoting digital manufacturing to improve productivity, product quality and, ultimately, competitiveness. In North America progressive processors are taking advantage of new and powerful controls and software from such specialists as Siemens, IQMS/Dassault Systémes, Allen-Bradley, Omron, RJG and others, as well as from select equipment and robotics vendors, to create connected operations in which machines communicate seamlessly with each other and provide detailed operational data in real time.
The results allow product makers to extend quality control to ever-smaller batch sizes, even individual parts if necessary, and assure that production fully meets customer specifications.
Automation suppliers, meanwhile, are equipping robots with vision-inspection systems and other sensors to detect quality problems ranging from excess flash on parts to surface imperfections and short shots. This data can be used to manually or automatically adjust a processing machine or mold to eliminate quality problems.
I4 connectivity is also effective for predictive maintenance on machines, molds and tooling, and other equipment. By placing sensors at key points and monitoring them, processors detect when a component needs replacing, thereby eliminating the potential for unexpected and costly downtime, as well as off-spec production.
Such capabilities are increasingly available in software systems and machine controls. As such, they have the potential to create fully automated process plants—so-called lights-out manufacturing facilities—in which human operators are either eliminated or reduced to a handful of supervisory personnel.
The capital expense of installing I4 and similar automation may be daunting to end-users, but suppliers maintain that the return on investment can be as little as one year or less and the upside in productivity, quality, economy and competitiveness is worth the cost. As a result, U.S. adopters of digital technologies include medium and even smaller companies as well as large manufacturers. Much of the attraction of I4-level automation relates to the production involved, rather than company size. Medical, automotive and electronic parts, for example, have high quality thresholds, and advanced automation is the price of market entry.
Automation is not without its downside—at least to critics who claim it deprives humans of jobs and governments of tax revenue from displaced workers. Initiatives are periodically proposed to levy taxes on robots. The latest effort in the U.S. comes from Chicago, Illinois, where a city official wants an annual tax on each robot that is equivalent to one year’s salary of every worker it replaces.
To date, no U.S. city or state has passed a law to tax robots. The European Union Parliament has rejected such a measure; and the only country in the world where a similar proposal has become law is South Korea. In this country, however, the government has removed business tax deductions for robots that take human jobs, not levied a tax on their use.
For now, however, mass replacement of humans by robots isn’t likely. Robot makers say that when manufacturers install their equipment, they typically reassign affected workers to higher-value jobs. And with the industry at full employment in the U.S., companies do not want to lose workers.
Find out more about K 2019 here.
Related Content
Solving Mold Alignment Problems with the Right Alignment Lock
Correct alignment lock selection can reduce maintenance costs and molding downtime, as well as increase part quality over the mold’s entire life.
Read MoreMachining Center Spindles: What You Need to Know
Why and how to research spindle technology before purchasing a machining center.
Read MoreAdvantages and Disadvantages of Copper and Graphite Electrodes
Both copper and graphite provide approximately the same end result, so it is important for a shop to consider the advantages and disadvantages of each material in order to discover what would work best in their shop floor environment.
Read MoreThe Ins and Outs of Hot Runner Temperature Control
A training checklist that explains the why and how of proper hot runner temperature control and system management.
Read MoreRead Next
Are You a Moldmaker Considering 3D Printing? Consider the 3D Printing Workshop at NPE2024
Presentations will cover 3D printing for mold tooling, material innovation, product development, bridge production and full-scale, high-volume additive manufacturing.
Read MoreHow to Use Strategic Planning Tools, Data to Manage the Human Side of Business
Q&A with Marion Wells, MMT EAB member and founder of Human Asset Management.
Read MoreHow to Use Continuing Education to Remain Competitive in Moldmaking
Continued training helps moldmakers make tooling decisions and properly use the latest cutting tool to efficiently machine high-quality molds.
Read More