CAM in Action
CAM demonstrated via a tire mold and shoe sole mold machining application.
This video shows CAM being demonstrated via a tire mold and shoe sole mold machining application.
Z-level roughing and Z-level finishing are the traditional programming approaches that have been used successfully for years. In some applications, such as tire mold programming (see Figure 3), the toolpath projected on the geometry by Z-level have proven to be inefficient due to a non-constant floor condition resulting in multiple retracts. Shape offset roughing and finishing, named due to the toolpaths offset from a shaped surface rather than projected at Z-level, overcome this issue and allow for the inclusion of bull-nose tools and end mills. A programmer need only select the floor of the surface, and from this input, they may choose to rough, floor finish, or both wall and floor finish. Since the toolpath accounts for the shape of the surface bull-nose and end mills may be employed and the tool is constantly engaged in material thereby improving cutting conditions and minimizing retracts.
Related Content
-
OEE Monitoring System Addresses Root Cause of Machine Downtime
Unique sensor and patent-pending algorithm of the Amper machine analytics system measures current draw to quickly and inexpensively inform manufacturers which machines are down and why.
-
What is Scientific Maintenance? Part 2
Part two of this three-part series explains specific data that toolrooms must collect, analyze and use to truly advance to a scientific maintenance culture where you can measure real data and drive decisions.
-
What Is Scientific Maintenance? Part 1
Part one of this three-part series explains how to create a scientific maintenance plan based on a toolroom’s current data collection and usage.