Mitsubishi EDM
Published

Throwback Thursday: Criteria for Effective EDM

The work metal, EDM process priority, electrode material and machine are the four main considerations for effective EDM of non-standard alloys. These four areas play a critical role in making the overall EDM process profitable. Read this archived article for more.

Share

in terms of the work metal (material being machined), elemental structure, melting point/temperature and thermal conductivity will impact how it is machined on the EDM. Since EDM is a thermal process, the melting point/temperature and thermal conductivity of the work metal can create difficulties for the EDM operator (see chart below). Knowing the elements that make up the material will help determine the optimum melting point/temperature and thermal conductivity.

Work metals such as copper and copper alloys have low melting points and high thermal conductivity, which dictate how the work metal will react to the heat of the spark. For example, a highly conductive work metal will dissipate the spark energy quickly throughout the material. Other metals, such as tungsten and carbide, have higher melting points and lower thermal conductivity, and require a spark hot enough to bring them to their melting points but not so hot as to destroy the integrity of the material.

The work metal’s melting temperature and thermal conductivity require the EDM operator to adjust on-time, amperage, polarity, voltage and off-time parameters, which differ from one 
work metal to another. If the same EDM approach is used regardless of work metal, the end results could be vastly different.

The EDM process priority refers to the desired metal removal rate, electrode wear and surface finish. This information helps the operator determine the best approach to the job. However, regardless of what is identified as the main priority, electrode size, detail and shape must be known in order to determine the appropriate machine parameters, including amperage, on time, off time, voltage and polarity. 

When deciding on electrode material, it is important to look at its structure. Graphite can vary in particle size, uniformity, material hardness, flexural and compressive strengths, apparent density, and electrical resistivity. Metallic electrodes can vary in material hardness, flexural and compressive strengths, and electrical resistivity. Some questions to ask before selecting the electrode material include:
• Which material holds up during both machining and the EDM process without chipping, flexing, warping or expanding as a result of the heat generated from both processes?
• How will the electrode material affect the cutters being used to machine it (how fast will these cutters wear out)?
• How long will it take to machine each electrode, and will the electrode need secondary operations (such as deburring or polishing)?
• During the EDM process, how will the electrode material hold up to the work metal? 
• Can the electrode material achieve the speed necessary to 
get the maximum metal removal rate (MRR) with minimal electrode wear and the required surface finish?

Determining the number of required electrodes is based on the part detail requirements, depth of the machining, surface finish, tolerance and the number of parts required.

There are several brands of EDMs that offer a wide variety of features and options, including ease of programming, toolchangers or robots for automation, high-speed axes, generators with a variety of power supplies, databases for cutting conditions appropriate for electrode materials and work metals, and adaptive controls to monitor cutting conditions. 

Read the full article.

Mitsubishi EDM
MoldMaking Technology Magazine
Maximum Mold Precision
Progressive Components
Forget about long angle pins & hydraulic cylinders
KM CNC Machine Service
Techspex
MMT Today enews

Related Content

Industry 40

Maintaining a Competitive Edge: EDM, Automation and Machining Technology Roundup

This month’s technology roundup features products, processes and services relating to EDM, automation and machining. For example, jig grinding for large molds, scheduling automation software, cobot integration, die sinker EDM and much more.

Read More
FAQ

Soft Wired: Cutting High Taper Angles with Wire EDM

Examine the wire’s properties to determine the right one for achieving the best cut.

Read More
Machining

Mold Builder Meets Increased Domestic Demand With Automated Cells

Burteck LLC experienced significant demand increases due to reshoring and invested in automated machining cells to step up its production output quickly and avoid losing business.

Read More
Basics

Maintaining a Wire EDM Machine

To achieve the ultimate capability and level of productivity from your wire EDM on a consistent, repeatable and reliable basis, regular maintenance is a required task.

Read More

Read Next

3D Printing

Are You a Moldmaker Considering 3D Printing? Consider the 3D Printing Workshop at NPE2024

Presentations will cover 3D printing for mold tooling, material innovation, product development, bridge production and full-scale, high-volume additive manufacturing. 

Read More
Tips

Reasons to Use Fiber Lasers for Mold Cleaning

Fiber lasers offer a simplicity, speed, control and portability, minimizing mold cleaning risks.

Read More
Mitsubishi EDM