Sinker EDM Machine
Published

Adopting Automation

Shops are facing increased demand for shorter lead times, improved quality and lower costs. Automation offers several key advantages for overcoming these challenges.

John Bradford, VMC/EDM Turnkey and Automation Manager, Makino

Share

Advancements in automated technologies have expanded to accommodate high-mix production demands, and these technologies are ideal for mold, tool and die machining processes. Complex and sophisticated material-handling cells can be designed for a wide variety of applications, including hard milling, graphite milling, five-axis machining, and sinker and wire EDM. The net result is consistent performance and improved efficiencies across all processes through the elimination of manual setups and stack-up error. Also, automation of mold, tool and die processes support companies in optimizing labor resources by removing non-value-added labor practices and empowering companies to redeploy labor into more value-added roles that focus on business growth. 

Many mold, tool and die shops are facing increased demand for shorter lead times, improved quality and lower costs. Automation offers several key advantages for overcoming these challenges:

Lead time reduction. Implementing automation can provide dramatic reductions in lead times, as well as improved flexibility in production schedules. By decoupling setup processes from machining processes, automation can maximize machine utilization, from an average of 30 to 35 percent on stand-alone machines to as much as 85 percent within an automated cell. It also can enable shops to accommodate quick turnaround in completing urgent engineering changes without disrupting processes in progress. This flexibility is ideal for mold, tool and die shops that need to shift rapidly within a high-product-mix environment. Moreover, the ability to perform lights-out processing opens up additional machining time to produce more workpieces during off hours, particularly long-cycle-time applications.

Shorter lead times and improved scheduling flexibility also can provide greater throughput and opportunities to improve workflow efficiency and reduce on-hand inventory.

Quality improvement. By automating work loading/unloading and reducing the number of setups for processing, shops that use automation can benefit from greater accuracy, quality and consistency, because this capability eliminates several of the most common sources for deviation, including human error and stack-up error. Additionally, many automated systems are designed with in-process error-prevention technologies such as coordinate measuring, tool-length measurement, and fixture, workpiece or tool probing. When engineered properly, closed-loop feedback can be also introduced into a cell for even higher degrees of quality and confidence.

Cost reduction. Automation can be one of the most powerful means for reducing the cost of producing molds, tools and dies. With fewer setups, elimination of manual loading and unloading, less secondary handwork and the ability for one operator to manage multiple machines simultaneously, automated machining systems can enable shops to significantly reduce non-value-added labor time and its associated costs. They also can relieve stress and costs associated with identifying the additional skilled labor resources necessary to grow capacity. 

Cost reductions also can be realized with faster return on investment in capital equipment and the ability to extend operating hours through unattended operation.

Making the move to automation should not be taken lightly, however. Designing, engineering and implementing an automated machining cell is a complex process that should be performed with the support of experienced engineering partners and equipment providers. This buy-in is essential to ensure the effectiveness and long-term reliability of any investment in automation. 

Makino

Millstar
Molded to Perfection
Gardner Business Intelligence
Regal Components: Custom precision mold components
Progressive Components
The Automated Shop Conference
SolidCAM Mold Machining for maximum precision
Kor-Lok
Graphite Selection Assistance
IMTS 2024
Techspex
New COOLED Compact Slide - Amazing Advantages

Related Content

Forces and Calculations Are Key to Sizing Core Pull Hydraulic Cylinders

To select the correct cylinder, consider both set and pull stroke positions and then calculate forces.

Read More
Regulations

Treatment and Disposal of Used Metalworking Fluids

With greater emphasis on fluid longevity and fluid recycling, it is important to remember that water-based metalworking fluids are “consumable” and have a finite life.

Read More
FAQ

Machining Center Spindles: What You Need to Know

Why and how to research spindle technology before purchasing a machining center.

Read More
Tool Steel

Moldmakers Deserve a Total Production Solution

Stability, spindle speed and software are essential consideration for your moldmaking machine tool.

Read More

Read Next

3D Printing

Are You a Moldmaker Considering 3D Printing? Consider the 3D Printing Workshop at NPE2024

Presentations will cover 3D printing for mold tooling, material innovation, product development, bridge production and full-scale, high-volume additive manufacturing. 

Read More
Surface Treatment

Reasons to Use Fiber Lasers for Mold Cleaning

Fiber lasers offer a simplicity, speed, control and portability, minimizing mold cleaning risks.

Read More
Cutting Tools

How to Use Continuing Education to Remain Competitive in Moldmaking

Continued training helps moldmakers make tooling decisions and properly use the latest cutting tool to efficiently machine high-quality molds.

Read More
Regal Components: Custom precision mold components